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It has now been twenty years since the publication of the origin*1 paper, , “An
Optians Character Recognition System Using Decision Function” by C. K. Chow in IRE
Trans. on Electronic Computer in 1957 , in which he formulated pattern recognition as
a problem of statistical deciaion theory. During the last two decades, statistical
pattern recognition was well developed in theory and applications with the peak sc~tivity in the late sixties. The area has now reached a fairly saturated condition
as its capability and limitations are weil explored . The limitations axe obvious:
the patterns are not characterized by the statistical information alone and many use-
ful statistical properties cannot be fully developed with available mathematical sta-
tistics. The paper outlines important but unsolved problem areas in statistical pat-
tern recognition and then takes a new and close look at acme problems which are re-

.‘ lated to the finite sample size constraint. In an effort to bridge the gap between
theory and practice, constructive solutions are provided for the probiems: finite
sample distance and information measures, f inite sample nearest neigbbor decision
rule, contextual analysis, decision rules based on discrete and continuous measure-
ments, and the finite sample stochastic syntax analysis. It is concluded that there
are still many challenging problems to be solved in statistical pattern recognition

~ . and every effort should be made such that the theory works well in practice.
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• A New Look at the Stat istical Pattern Recognition

1. Int~~~~ tio*~ • • 
:~~~~~~ .

It has now been twenty years since the publication of the orig inal paper , “An
• 

• 

Optiame Qiaracter Rscognitio~ System Using, Decision Function” by C.K. thaw in IRE

Trans . on Electronic Computer in 1957, in which he first formulated pattern

j recognition as a problem of støttstical dtciaion theory. During th . last two decadec

statistic al pattern r.coguitj~e was veJ.l developed in theory and applications with

peak a~Uvity in, late sixties. The area has now reached a fairly saturated condition

as its capability and limitations are well explored . The limitat ions are thv ioue:

the patterns are not characteriz ed by statistical information alone and even some

important statisti cal proper t ieø canno t be developed with available mathematical

stat istics . This situation has been quite typical with the applicat ion of every

branch of mathemstic~ 4 However for researchers new or old to this area there are

still many ch4lenging problems remain ing to be solved . In (lJ , ten probl em areas

where the solutions are wanted are listed, not necessarily in the order of

importance, as, : featu r. extract ion , nonstationary patterns , adaptive systems,

learning complexity , finite sample size effects, computational recognition

complexity, contextual analysis, optiw pattern recogniz er , statistical and

syntactic mixed model, and the automatic generation of recognition rules for

complex pattern s . It i. hoped that good solutions to some of these problems will

become availabl e in the ne*t dSC&dSe
I

It ii not intended to survey the area, which is ~~. quite broad, in this paper.

Many books and art icles have dons this survey well. Instead the paper takes a oar

and close look at certain probls.s in statistical pattern recognition med offers

some constructive solutions. Particular attention is given to bridging the wide

gap bstvss~ theory and practice, notab1~y the pràbleme of finite s~~~le constraint .

II. Finite S~~~l. Distadce !bi sures

Distance as.surss are useful for featur e selection and extract ion and for

error boende of eyes error probability (ass e.g. [23, Qiapter 4). They hews bean
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L~ P~~ctenaivei7 examined in r.cen t years ~~d:rth. ass*~~ tion of ~~rg. sample

size. In practice the sample size y be limited or small and many conclulions -

drawn under infinite sample ass *~~ tiofl may not be valid usder finite sample con—

atraint (3]. The discussion here will be limited to Gaussian msasuremsuta foi ~~ ~~i !

divergence and Bhattacharyy a distance but can b. easily extended to other ca.á.

• Cons ider first the case of. two *Lvaria te Gaussian densitieS with means

and a2 and the same varianc e a~. last “ denote the qu~tity ev~luatM by nail

the sample estimates • Then the difference in divergence between infinite sample and

finite sample sizes is ~~~~~~ ~~~~~~~~~~~

J — J
~~~~~

((m1.— a2)
2 —(a.~

..
a2)

2] • • • : ‘
~~~~

‘ .. ~~~~~~~ ~~~~~
•

where we have aaause.d that ~2 is known . The expected vej.ue of the differ ence
• 

(2)
• 

• 
is always positive where N1 and N2 denote the ni~~~srs of samples for classes 1 and

2 respectively. It is also assused that all samples are Statistically independent.

• The positive bias given by Nq. (2) indicates that the divergence evaluated by

using a finite rnwh er of samples can lead to an over opt iministic estimate of the

error probability. • 
~~~

Next Consider the imivariate Gaussi an densit ies with zero eana and variances
2 

~~~ ~,.
2

• The divergence based on the ~~~~l. eStimated parameters is1 2 2 *2a C C , • •
• “‘~~~~~~~~~~~~ 

• 

(3)
1 . ,~. ~~~~~(

The ratio s -u~ /a~ has the F-distribUtion with (I~, I~ ) degrees of freedom. The

expected error due to the finite sample size ii -

2 2 • • • •

X(J J)~~~.4 ç~~~f~~~ I ç4T t ° , ..~~~~~~~ r:c • ‘~~~~ ,.. ~ •

where the positiv , bias can be sisnific~~t for i~~lI sampl. sizes.

The ~~attadiaryya distance based on the s~~~ls estiasted parameters is 
~ 

•,
~

a a , a2 1 ‘11+~~1~~~ ’ ‘ , • ..
(5)• , a1 •. •  •

- 
— • - -,- - -

~ 
— • 

•
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By using the Taylor series expansion of B with respect to the true value B, and

retaining terms up to the second order in the expression , vs obtain

E B — B ) — — 2 1 ~ 2
4(a~+ a 1) LJ 2~~~2

a4 
+ 2a2a2 — a4 N 2(N + 2)

+ 

8(a~~+ a ~)2 ~~~ N2 — 2 ~~~N1(N2 — 2)(a2 — 4 ) ’
• •

,

which is negative for 4>  1 + Ii and positive otherwise. As the sample sizesa2
approach ~, the bias is not zer o becaus e of the series trimcation. However , the

sample size effect is ev~tdent f rom Eq. (6).

Now consider the multivaria te Gaussian densities for p—dimensional measurements.

Let and be the sample mean vectors corresponding to the true mean vectors

and M
2 

of classes 1 and 2 respe ctively . Also let S be the sample estimate of

the caisson covariance matrix 
~ given by

N1 N1+N2
S — + N

2 
— 

-
~~ ~ E ( X ~ — L)(X~ — L~) ’ + 

~ 
(X~ 

— 3~~)(X~ — i2~} (7)

where X is the vector measurement from either class 1 or clas s 2.

For infinite sample case the divergence is

— (~A
1 u2) r’( — ~a~) (8)

• which - is the same as the ilahalanobis distance. The divergence using sample

estimated parameters is
• 

J — ( — ;)‘s’(ç — ) (9)

where E[S] — ~~
. The covariance matrix of — is

Let k ~~~
— + F • The random variable 3/k has Ilotelling’ a T2 non—null distrtbutiion
1 . 2

• (see e.g. [4]) with 141 + a2 samples and p degree of freedo m given by

II~( fi~ ~ )d ~ — e —3/2k (~J~~)r 

3(’~ + r , ~~~~~~~ ~~ 
+

A ( /2)+r—1 a (10)

— L32)çf+T)~~ 
d( ), 3 ) 0.
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where f is the degree of freed om of S. By t~ ing the formula
r~ i i i

£

‘ (1 +

the expectation of J can be written as

EIJ ] 
~~~ 

+ 
f _

~~~ 
+

-~~~ 

- 

(11)

For p ”.l , t h e n f — l a N d Eq . (11) is the aame as Eq . (2). F o r p > 1 , E(3) differ e ‘
0k f rom 3 not only by an additive term depending on sample size but also by a mult i—

plicative constant independent of the Sample sizes. The undesired effect of

finite sample size is quite evident from Eq. (11). For equal mean but unequal.

covariance case the Bhattacbaryya distance experiences the same effect as
• 

• divergence since B — 318.
For two multivariate Gaussian densities with zero mean vectors and covariance

matrices and whose unbiased estimates are V1 and V2 respectively, the

divergence based on sample estimated parameters is
- 

- — i tr(V1V~~ + V2V~~) — p (12)

Since the measurement s from the two classes are independent ,

E[J ] — ~~ tr (E(V1)E (V~~) + E(V2)E(V~~)} —
• p (13)

Both V and V 1 follow the Wishart distributions with expectat ions
~‘ N—l 1 —1E(V~) — I 1, E(Vj ) * N ~~~~l ~~~~ 

1 — 1 ,2 (14)
• i r

Thus
N N

, p + 1  ~ ~~~~~ P + l  - 

~
‘ 

~~~~~ (15)2 r
~~N2

_ P . . . l -~l ’2  N1 — p — 1 £.2 L1 -

where the bias term coincides with Eq. (4) for p — 1, i.e. the univariate case.

The above discussion clearly illustrates the effect of finite sample on the

bias of estimated distance measures . The variance of such estimates may also be

deter mined. In general the estimated divergence I~as positive bias while the

behavior of Bbattacharyya distance is less predi ctable.
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III. Finite Sample Information ~~asures

For feature selection, more inform ative features result in low classification

errors . Rowever , if the sample size is limited , information measures estimated

from samples may not be as effective . Consid er the equivocation for m classes

defined as

• H — - BE 
~ 

P(w1/X) log P (wj/X) ] (16)
1—1

where P(w1/X) P~ is the a poateriori probability of the ith class and the

expectation is taken with respect to the space of X.

The sample—based equivocation using the estimated a posteriori probability

• Pu s
• m ~H — ~~ P~ log P1] (17)

i—i
C Let be the parameter of the ith class , and its estimate. Assume that the

eff ect due to sample size is small so that we need consider only the first two

terms in the Taylor series expansion of P1, • -

p
1 + P~~(0~ — s~) (18)

where Pj is the partial derivative of P1 with respect to evaluated at 0~
The difference between the est imated and true equi.vocat ions can be written as

• H — H B 
~~ 

[P~ (O1 — 8~)(1 + log P~) + P~ (01 — 0~)2] (19)
A A

which is still a function of If is an unbiased estimate of O~, then the

expectation of the difference with respect to the estimated parameter depends only

on the variance of 0~ which is usually inversely proportional to the sample size.

The variance of H given by E(H — E(H)) 2 where the expectations are with respect

to can be shown to be proportional also to the variance of 01 or inversely

proportional to the sample size. For the Renyi ’s inform ation , it has been shown

[5] asymptotically that the sample estimate of the information can have a variance

of the order of the reciprocal of the squared sample size under certain condition .

Thus the equivocation estimated under finite sample can be quite Inaccura te.
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• IV. Finite Sample Nearest—Neighbo r Decision Rule

The nearest—neighbor decision rule (L~NDR) is attractive in the sense that the

NN—risk is upper bounded by twice the Bayes risk when the sample size approaches

inf inity. For a given sample size the l—NNDR. is unifor mly better than the k~—NNDR.

The small sample NNDR performance has been considered for the restrictive cases :

Fix and Hodges [6] investigate d the small sample perfor mance for k~~NNDR for

univariate and bivariate nor mal distributions ; Levine et.al. [7] showed that the
- 

performance for small sample sets from uniform distributions is close to its

asymptotic value . For mult ivariate Gaussian densities and allowin g the sample size

to increase with k , it is shown [8] numerically that the k—NNDR has a very close

• performance as the Bayes linear discrim inant analysis. This result is significant

in the sense that under finite sample condition the NNDR is comparable to the Bayes

rule using estimated parameters. For a given set of n samples with 1mowr’~

-~ classification, it would be u~ re meaningful to compare different decision rules

- -

- 

using the n samples rather than to compare with Bayes rule under infinite sample

size assumption . For the Gauss ian assumption the NNDR is very competitive with

other decision rules based on the results of [8].

• In practical use of nearest—neighbor rule, the large nuther of samples would

require large amount of storage and computation. Methods for reducing the

computation requirement and editing the samples have been considered . It has been

established experimentally that there is always a small s*ábset of good learning

samples that dominate the performance. In other words the performance would be

insensitive to sample size for good quality neighbors. This idea is somewhat

similar to the edited NNDR which attempts to elimitiate samples on the wrong side

of decisicin boundary.

The fundamental question whethe r the Euclidean distance is most effective

in NNDR has not been resolved . Experi mental results based on some weighted

Euclidean dis tance have indicated better recognit ion performance than on

Euclidean distance. If the samples are close to be normally distributed , a better 

. . - . - - .. ••.. -
. - - - • ~~~~~~~~ _ _
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distance computation makes use of the covariance matrix for each class , i.e. for

each neighbor ~~~ belonging to the ith- - class , compute the squared distance

(x — P~
1
~ ) ’V 1(x — 

pa.)) — d~ (20)

and choose the class which provides the minimum d~ . The Euclidean distance may

be considered as a special case of Eq . (20) by setting V1 = I. If the nearest—

neighbor is considered as the reference point of a class then for the minimum

distance classifier provided by the Euclidean distance NNDR , there exists a linear

decision function, obtained by using common convariance matrix, which is at least

as good according to the classification theory (chapter 2 of (2]). If the

covariance matrices are quite unequal then the quadratic classifier provided by

• Eq. (20) is better than the linear classifier. Exactly how much better Is a

question better answered experimentally. Recent investigation with the seismic
data (9] has shown that the modified distance given by Eq. (20) provides more than

15% Improvement in the percentage correct recogniticu than the Euclidean distance

NNDR. Of course the sample size must be large enough to calculate the covariance

matrices accurately.

In summary , the NNDR is an effective and reliable decision rule for finite

sample size condition. Especially for small sample size when a good estimate

of parametric density is not available, the NNDR should be used.

V. Cont extual Analysis

‘
. I • 

A major weakness of statistical pattern recognition is the difficulty to take

the contextual relations into account in the recognition process. character

recognition is not considered here as it requires somewhat different contextual

analysis [10]. An imagery pattern is rich in contextual information part of which

is statistical in nature. A formal statistical approach to this problem is the

compound decision theory . The finite sample constraint in digital imagery

patterns is caused by limited nuvber of images and the limitation in spatial

resolution. In image interpretation and classification, an image La usually

LI. 
_ _  

_ _ _ _ _  _ _~~~~~~~~~~~~~ S~~~~ W~~~~~~*r,~r y . _ 
- - -
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partitio ned into a nuther of aubimages. A vector measurement may be taken from

each subiisage. Ey assuming dependence on the nearest four neighbor eubinages,

the compound decision rule is to choo-se the class which maximizes (w,~, ~~ — 1,2,...
is)

~~~~~~~~ j  P(Xj /wj )P(wj ft k) • (21)

which is adapted from the last equation on page 201 of (2]. lIar. l~ is the vector

measurement for the kth subimage. Notice that the part of the expression outside

of the product sign is identical to that used in a simple maximum likelihood

decision rule witho ut considering neighbor subimages at aU. The product trerli

represents the context ual information for the kth subiaiage. Each multiplier in

the product term represents the contextual. contribution from an adj acent neighbor

- subimage. By rewriting the multiplier as
P(cu /QJ P(x~hi~)P(ø~) 

P((a3~) (22)

it is seen that computationally this is a weighted histogram of the subiinage j ,

with each class Wj being weighted by the factor P(wj/tQ/P(wj) which reflects
the dependence between two states of nature for two adj scent subimages k and 3.

The accuracy of the weighted histogram is related to the performance of compound

decision rule given by Eq. (21) . The sampling distribution of the weighted

histogram for q quantization levels and a total of n pixels for the jth subimage

a

r ( n + g )  
— 

q r ~3 23r F(r 13 + 
l)___r(rqj + I.) 

~~~~~~~ 

i~ - ‘ ‘
where r

~~ 
is the n ziber of pixels belonging to the ith quantization level . The

Bayes estimate of P~ , the fractional number of pixels for the ith level is

+ 1

~ij ~i + q  (24)

By using Eqs. (2 1)—(24) and foUowing the analysis of (11], an average probability

of correct recognition for the subimage k can be deter mined as a function of

sample size (i.e. the number of pixels n) and the number of qua ntizatio n levels q.

— —
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If we consider two classes only such as object (w..,~ 1) and background (o~ — 2),

then the effect of contextual dependence appears as a multiplicative factor in the

likelihood ratio . A aubopt imal but much simpler scheme to determine such

factor is to comput e
4 P(w — l /wk — l)/P (t ~ — 1) + P(w — — l)/P( w — 2)

— 1/W k — 2) IP (~ — 1) + — 2/~g.~ — 2)IP(w
3 

— 2) (2

..s the histograma computed for all four neighbor subimages tend to cancel out in

the numerator and denominator. Other simple ways to profitably utilize the

statistical contextual information in image analysis should also be examined both

theoretically and exper imentally .

VI. Decision Rules Based on Discrete and Continuous Measurements

- - 
- Most pattern recognition work assumes either discrete or cont inuous measure-

ments (including measurement quantized from the continuous one). In image

recognition, it is possible to tenti~tively assign each eubimage to one of several.

possible classes , which is a discrete quantity, whilo the actual measurement of
- . the subimage is continuous. In the decision tree f ramework, an o~erall classifica-

tion. ~. of the image may be made by using all the infor mations on each subimage

including the preliminary decision made on it. Similar situati on arises in

medical diagnosis in which the final diagnosis depends on decisions made on some

tests and other continuous measurements.

Recently , Krzanowski L12 ] considered the use of Fisher ’s linear discriisinant

function for classification with a set of p continuous and q binary variables .

His work is issnediately applicable to medical data. From the information provided

by the discrete variable, a likelihood ratio is formed on the continuous variable

and compared with a th reshold determined by the discrete variable. For image

analysis , a decision or inter pretation has to be made on an image containing a

number of aubimages on which individual decision may be mad e first. A bottom—u p

decision tree may bs established to reach the best final decision . Inconsistent

• - decisions between two neighbor subimages may indicate the existence of an object

I
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boundary or an incorrect decision on one of them. Backtracking or error correction

mechanism may be added to the decision isaking process. The size of the subinage

should be chosen so that it is much smal ler than the object size. The decision

• process can be sumear ized as follows :

Step 1. Starting from the first subimage, compare its decision with all eight

neighbors . Proceed next with one of the sub image of same decision. If

no consistent decision is available, proceed with any neighbor.

Step 2. Examine the second subimage in tha same manner as Step 1. Repeat the

step as many times as needed until returning to the first subimage with

closed boundary. The desired object is located .

Step 3. If a closed boundary is not available after search and merge in Steps 1

and 2 , then decision is made that the image does not contain the object.

Ob’v iou1~y other decision tree procedures can be established (see e.g. 1 13])

for the same objective . These procedures are much easier to implement than the

use of “one shot ” compound decision function.

VII. Finite Sample Stochastic Syntax Analysis

The production probabilities in stochastic syntax analysis [141 are usually

estimated from a set of distinct sample str ings by frequency ratio. The limited

string sample size is a source of error in estimation and the final classificati on

performance. The error accumulates as a sequence of production rules is applied .

• The nonmonoton ic relation between confidence for and sample size (page 181 of

[141) is rather unexpected . To simplify the analysis, assume that N distinct

production rules have to be applied to complete a pérse. Let a13 be the

difference between the estimated and true producti on probabilities , i.e.

e~3 
— P j3 (26)

Then E(e~3
) — 0, coy. — — 

~ij~ ik’~’ 3 ‘~~ k where — with

defined by Eq. (6.4) of (141. ;~~ approaches p~3 
as the number of sample strings

t, i.e. the sample size, approaches infinity. The value ~ is proportional to t.

_ _ _ _ _ _ _ _ _ _ _ _  --
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—li-

L Th. likelihood function for the gramsar of a given class is
N . N
Jj p~3 

— fl (p~1 + e~4)
3— 1 3—1 ~

which has the expected value

• M A N 1E( II p14 ) — II p14 — 11 p14 + higher order terms (27)
3—1 ~ 3—1 ‘ n 3—1 -‘

If we ignore the higher order terms then the likelihood function based en estimated

production probabilities is expected to be of f from the true value by an amount
• 

- 

- 

inversely proportional to the sample size and proportional to i,i2. For long str ing

the accuracy of the likelihood function may thus be very poor. The variance of
• the likelihood function can also be determined. It appears that the only way to

reduce the finite sample effect is to increase the sample size.

VIII. Concluding Remarks

This paper has —-amined some current problems in statistical pattern

recognition especially the effects of finite sample size, which cause the gap

between theory and practice in pattern recognition. When the effects are

monotonic then the best way to reduce such effect is probably by increasing the

sample size. There are many other problems , as listed in Section I, in statistical

pattern recognition which remain to be studied also. Thus we believe the area

should remain to be an active one for researchers .
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